WHY | AM NOT A WORDIST:
PHILOSOPHICAL CONSIDERATIONS ON GRAPHICS-ORIENTED WORD PROCESSORS
by Lorenzo Pefa

Copyright © 2005 by Lorenzo Pefia
----- http://www.jurid.net/dos/word.htm ----

Table of Contents
1— Two different views, to start with
2.— The graphic environment
3.— One dimension or two
4.— Conclusion

81.— Two Different Views, to Start With

Back in the late 80's the word-processor MicroSoft-Word (henceforth MSW or
Word) was starting to compete with WordPerfect.

The latter program was overwhel mingly prevalent in almost all circles, academic
or otherwise, but even at that stage there was no shortage of supporters of MSW —
wordists as | shall be calling them.

Their reasons were the following ones:

1.— Intuitiveness; which | construe as follows: whereas M SW appeal ed to the senses, by
showing you (in an incisively visible way) what was going on and what you
were expected to do in order to have your writing entered, stored and formatted,
WordPerfect demanded an effort of abstraction, thought and planning on the part
of the writer.

2.— Facility; whereas WordPerfect required you to memorize a number of function-key
usages, MSW could be operated with almost no previous learning process.

3.— Smoothness; you could handle M SW-tools with less effort, in a more comfortable
manner.

On the other hand WordPerfect was acknowledged to excel as regards results,
productivity, potency. One of its advantages was the array of charsetsit developed since
WordPerfect 5.0 (May 1988). Moreover the WordPerfect macro language was strong and
powerful, allowing you to do countless things hardly possible with MSW.

| could never verify any of the purported good qualities of MSW. In 1989 | tried
a pirated version of MSW (everybody around me was using WordPerfect only). | failed
to accomplish anything. Its intuitiveness was lacking as far as | could ascertain. Ever
since my relationship with MSW has aways been an unhappy one. | found the program
slow, unwieldy, cumbersome, clumsy, awkward, unpredictable and baffling. Admittedly
| had not studied it, but the almost-zero learning time seemed to me a fable.

There are of course several kinds of perceptual capacity and personality. Other
people are surely more clever, more alert, less visually impaired than | am.

«Why | am not a Wordist» by Lorenzo Pefia 2

As regards WordPerfect 5 for DOS, the need to store commands in memory was
not as arduous as that. Furthermore, WordPerfect 5.1 came in 1991 with a pull-down
menu bar which reduced the need to memorize key mappings.

All in all I chose WordPerfect for the following reasons:
(1) Most people were then using it.
(2) OCR’s were better attuned to save their output in WordPerfect format.

(3) The array of charsets allowed me to produce my papers using mathematical-logic and
Greek symbols.

(4) The macro language was uniquely helpful for processing documents in a number of
ways (and has remained to this day a decisive motivation for me to cleave to
WordPerfect 5.1).

(5) The reveal-codes pane allowed me to control my work and to rationalize the use of
formatting codes in order to achieve best results.

(6) 1 could enter, edit and shape my papers quickly and conveniently to my heart’s
content and eventually print it with diverse printers always with an elegant
presentation.

82.— The Graphic Environment

Enters the graphic environment. Windows was little by little bewitching people.
IBM produced the operative system OS/2 which by default was only useable as a graphic
environment.

It goes beyond the scope of this paper to delve into the good or bad features of
graphic environments in general. At the moment what alone interests me is what such
environments brought to word-processing.

(1) One of the most immediate advantages of graphic word-processors was getting over
the constraint of charsets. When you write by hand you are free to scrawl
whatever you like, whether it is a Latin character or not. For ages that freedom
allowed people to insert foreign letters, devise new symbols and mingle text
with drawings. Type-writers and text-oriented electronic programmes curtailed
such possibilities by restricting you to a choice of letters (and exceptionally a
number of previously listed graphic entities). The new graphic word-processors
leave such limitations behind, by somehow allowing you to handle your text in
a way more similar to hand-writing, which blurs or abolishes the boundary
between text and graphics.

(2) Friends of the new word processors claim they are more friendly in so far as they
show text and graphics alike black-on-white which is how we view text on
paper.

(3) Most of all the Wysiwyg concept implemented in those programmes has been looked
upon as one of their enhancing merits. Wysiwyg means: what you see is what

«Why | am not a Wordist» by Lorenzo Pefia 3

you get. Wysiwyg brings the computer era texts back to the type-writer. When
you typed a paper with your type-writer, what you were seeing on you paper
sheet was the end result you delivered to your readers. Of course your paper
could be then re-typed and printed under a different format altogether; its
content was not identical to its form. But you could not use the content without
the form unless you retyped it. With character-oriented word processors, on the
other hand, content and form parted company. You wrote your paper, edited it,
merged it with other pieces if necessary, stored it, shuffled it, cut and pasted
blocks, all with little fuss and bustle. In the end, you formatted it as you liked
it in order to print it (often with small characters, narrow margins and large
sheet-sizes in order to circumvent editorial limitations, if the editors were naive
enough to let you play that game).

Now all that is over. Reformatting remains possible but has become
much harder. You are supposed to enter your text as if what you were writing
was, at the same time, the final outcome you intend to deliver.

(4) Resorting to the mouse has even turned text-handling three-dimensional, since you
can jump over line-, paragraph- and page-breaks.

| think those four so-called advantages are liabilities. The main culprit is
Wysiwyg.

1.— Wysiwyg brings us back to the days when form and content could not be detached,
which gives rise to a muddle or an amalgam. A content can of course exist only
under some form or other. However the same content undergoes a number of
form variations. There is some kind of isomorphism between those diverse
forms, which is why all those presentations or formattings display the same
content. As Wittgenstein argued in his Tractatus logico-philosophicus, a played
melody, the gramaphonic disk, the written score — and indeed nowadays other
methods of representation — share the same content and are (somehow or other)
isomorphic to each other.

The harder the task becomes of separating content out of a particular
form, the further we recede to a backward lack of freedom. A non-Wysiwyg
way of handling a text does not try to show it under any particular display (such
as it is destined to come out when printed), but, on the contrary, allows the
writer to enter the text as an abstract entity, so to speak in a formless way (or
under a form especially adapted to screen viewing and keyboard handling, which
is entirely different from such forms as are suitable for printing).

2.— Wysiwyg cannot be true to its purpose, since the screen is a kind of support
altogether unlike paper. Physically that is obvious (I am not going to try to
explain it). Blind, mechanic imitation of the paper print-out on screen only
brings about a display which is very hard to read for visually impaired people.
Promised solutions such as larger monitors have proved to be deceptive.

3.— An enlargement of available charsets is welcome. In fact projects such as unicode
try to embrace a huge range of established or even artificial scripts and symbols

«Why | am not a Wordist» by Lorenzo Pefia 4

of many languages, even of fictional languages. The larger the range, the harder
it becomes to get a clear screen display and a quick processing. Of course we
should like to have both, but, electronic resources being scarce, a balance is
needed; all in all | prefer to keep clear readability and fast operation rather than
to be able to write Chinese ideograms, Sanskrit, Amharic, cuneiform Sumerian,
and so on.

Anyway, the spirit of Wysiwyg — at least if carried to the extreme —
may imply giving up any finite list of characters, since it tries to blend graphics
with text (as people can do in handwriting). But then the encoding of informa-
tion becomes intractable. (When you read a manuscript usually there is a finite
set of characters you assume each minimal part of the script belongs to; but of
course your expectations can turn out to be wrong and you can reach the
conclusion the writer is just inventing a new script or just drawing lines which
mean nothing). From the information-oriented view-point that course of things
seems to me more harmful than useful.

4.— Consequently, Wysiwyg means that a character is not taken to be a token of an
abstract universal type (chosen among a finite list of such types) but is regarded
as the drawing you were supposed to have in mind when you typed it.

Therefore, it is automatically equated with its graphical representation
within a certain environment; and then all other environments are geared to
mirror that chosen or ascribed representation as closely as possible. Take any
logic symbol.

In character-oriented word processors a symbol is encoded as a certain
item of the list (e.g. [9;99] is the 99th character of the 9th charset); accordingly
both the screen-display and the print-out are planned to correspond to the code.
Graphics oriented word processors, instead, reduce the symbol to one of its
representations, namely the one that presumably was meant by the author, such
as the nth character of a certain font (Verdana xxx or whatever), since when
typing you are supposed to see what you both type and get. Any conversion is
then aimed at preserving the same graphical result.

5.— Wysiwyg echoes Wittgenstein’s maxim that what can be shown cannot be said and
conversely. Our modern printing art has produced a variety of styles and fonts.
We have lower-case and upper-case, roman and cursive (or italic), bold, and
sometimes other appearance-attributes (old-English, Gothic, manuscript,
exchequer, underlined, etc). Graphics-oriented word processors show those
attributes the same way printed text does.

At the extreme opposite purely character-oriented languages (such as
HTML and TeX) handle such attributes as linear segments within the
syntagmatic chain. Thus in HTML the italized word ‘venue’ becomes
‘<I>venue</1>". WordPerfect 5.1 chose a middle course: certain attributes could
be shown but in a different way (e.g. as colours), but the underlying working
approach was linear, as you could always view activating the reveal-codes pane.

«Why | am not a Wordist» by Lorenzo Pefia 5

With reveal-codes on, the italized word ‘venue’ appeared as
‘[ITALC]venuelitalc]’. This representation allows you a better control.

83.— One Dimension or Two

The main difference between the two approaches is the divide between one-
dimensionality and two-dimensionality.

One of the advantages of human language, as against other symbolic systems of
communication, is its linearity, which enables us to enjoy a purely oral exchange along
one dimension only, namely time. Thus humans can exchange messages while looking
at other objects. Linguistic linearity is not absolute, since there are prosodic elements
which are non-segmental and thus bring in a certain degree of two-dimensionality (stress,
intonation, etc). However all in all our languages can safely be taken to be essentially
lineal.

Linearity has also made it possible for our languages to be represented by
writing. The main characteristic of our writing systems is that they reproduce linearity
on a two-dimensional support by dint of a convention (word-wrapping and line-breaking
as well as direction, be it left to right or the other way, or top to bottom or conversely).

A two-dimensional symbolic system such as bee-dance could hardly be
represented in a linear way.

Not that such a linear representation is impossible. If the axiom of choice is true
and a strong logic and set-theory are accepted (not necessarily classical logic and
standard set-theory), then every set can be well ordered; hence any information about an
n-dimensional space can be conveyed in a language all whose messages are linear. From
a practical view-point, though, the task would be extremely arduous or practically
unfeasible.

Linearity, our main communicational advantage, has given us, humans, the
opportunity to translate our languages into writing, printing, coding, and the other way
round (decoding, reading).

Wysiwyg waives linearity and handles a written message like a drawing,
independently of whether or not it can convey any message. It brings us back to a pre-
human system of communication.

What is thereby achieved is the richness of visual information, not necessarily
linguistically coded. What is partly sacrificed is the possibility to code and uncode,
convert, translate and store the messages under different formats.

How is two-dimensionality obtained within graphics-oriented word processors?
Look at a MSW document with a text editor. The document proper lies as plain
(extended-ASCII) text in the middle of the file, interspersed with a few control
characters, whereas a huge mass of gibberish, or bizarre binary codes, is heaped on top
and on bottom of the file. Those lumps of codes contain pointers to items within the
document proper. We can imagine something like that: if the 35th and the 82d

«Why | am not a Wordist» by Lorenzo Pefia 6

occurrences of ‘house’ within a document are italized, there is a coded information to
that effect — be it at the top or at the bottom of the file.

This is why, as MSW people have explained, there is nothing to reveal, and so
no reveal-codes option is available under MSW. You, the user, cannot reveal codes;
codes cannot be displayed as strings of text before your eyes, since they are attributes
of text which can be shown, not worded. Words are words, and attributes are attributes.

Such a two-dimensional approach (which amounts to nothing but Wysiwyg) can
be defended; but in the end it seems to me wrong, for four reasons:

(1) The pointer approach can only apply to a very narrow range of characters. In such
a way you cannot combine Greek, Cyrillic, Western Latin, Eastern Latin,
phonetic-notation, mathematical logic, algebra, etc. Wordists are likely to believe
that each document is coded as belonging to a certain language and hence to be
expressed with a particular charset. Such an assumption is unfounded. There
have always been lots of linguistic mixtures.

(2) The pointer approach makes reformatting and conversions difficult. Rather it seems
suitable for keeping the document as an unaltered intact block.

(3) The pointer approach hampers the task of preserving a useful distinction between
hard and soft codes. Suppose you have a Verdana 12.0 points font on; you write
an italized word: ‘virtue’. A Wysiwyug program is prone to ignore the
difference between coding it in a way which we can rendered as ‘<I>virtue</I>’
and in a way which would be rendered as ‘<Font:Verdanal2.0:italic>virtue
</Font:Verdanal2.0:italic>". Convert your paper to a different type of document
(Open Office or whatever) and choose a printer lacking the Verdana font — using
Times Roman instead; the disheartening outcome will be a change of font (and
size) at word-crossing.

(A soft code is one which can easily be adapted to reformatting and
conversion, one which does not depend on any particular setup you have
activated.)

(4) The pointer approach is contrary to the principle of economy. A character-oriented
word processor allows you to choose ‘<I>virtue</I>’ (the italized word virtue)
rather than “<I>v</I><I>i</I><I>r</I><I>t</I><I>u</I1><I>e</I>’. You are free
to use whatever you want, but most users prefer the economic choice (rather
than the proliferation of lurking codes) for the sake of efficiency and speed.

Such a distinction is unavailable under pointer-oriented word processors,
or at least outside the users’ control. This is why graphic-oriented programmes
produce those monstrously bloated documents: a few pages take up more than
one megabyte!

Thus rather than Wysiwyg | prefer Wysiwym: what you see is what you mean.
(Or something in-between which was the two-way approach chosen by WordPerfect
5.1.). | prefer to work with programmes such as TeX or HTML.

«Why | am not a Wordist» by Lorenzo Pefia 7

84— Conclusion

Wysiwyg is a two-dimensional procedure by which the screen behaves like a
two-dimensional drawing mirroring a likewise two-dimensional sheet of paper, with
images, graphics, display-enhancement devices and whatever the author fancies to
incorporate into their text.

Information-oriented programs treat a document as a string of words (or
monemes) interspersed with attributes (which are thus handled as interpolated
syncategorematic monemes).

Information-oriented programs (or hybrid programs, such as WordPerfect 5.1)
lend themselves easily to conversion, translation, encoding, editing, reformatting; whereas
graphics-oriented programmes are better suited for the task of producing a complex
output, half text, half graphics.

It is ironic that wordists are such people as prefer a program best fitted to
producing results which are not strings of words. Word fans are not people of the word.

Economists have developed the Hotelling model: imagine a road along which
there are two gas stations, near the extremes, and so at a long distance from each other.
In order to compete, they entice their competitor’s customers; little by little, they move
closer to each other; they end up both in the middle of the road.

Such a dynamic may explain why a number of competitors of MSW, such as
WordPerfect (and Linux Offices: Open Office, KWord, Abiword etc), tend to become
more Wysiwyg, more like MSW.

Yet, the converse tendency has not materialized; as a truly Wysiwyg program
MSW can hardly evolve in the opposite direction.

At the time of this writing (2005), the triumph of Wysiwyg-oriented MSW is
obvious for everybody to see.

Still, information-oriented programmes and languages are a better solution, for
seven reasons, namely:

— Connectedness (or two-way convertibility), thanks to the abstraction of characters and
codes.

— Reformattability (same reason).
— Flexibility (each user can tame and customize the program as they fancy).

— Economy and proportionality: time and machine resource-expense ought to be
commensurate with the results achieved.

— Control (you see what you mean).
— Universality (you can combine a number of languages and scripts within your text).

— Lightness: tasks are carried out quickly, promptly, with a few key strokes (once you
have learned how to enter them).

| hope the information-oriented approach will prevail sooner or later.

